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Abstract
Brillouin-zone (BZ) integrations in systems with two-dimensional periodicity
are discussed in the context of a method wherein the BZ is divided into simplices
(triangles), and band energies and properties contributions are represented by
quadratic interpolations based on six data points on the edges of each simplex.
This paper describes a straightforward and easily implemented algorithm for
identifying the paths bounding the occupied portion(s) of each simplex, and (in
contrast to earlier work by others) provides completely analytic expressions, in
closed form, for evaluating properties integrals over the occupied regions.

1. Introduction

Questions associated with the choice and use of Brillouin-zone (BZ) points (‘k-points’) for
periodic-structure calculations have received considerable attention in the scientific literature.
These points are generally used for two types of calculation: (1) those involving summations
over the occupied single-particle states, to obtain quantities such as band occupancies,
energies, and forces; and (2) those involving energy-resolved properties, such as densities of
states (DOS). A recent paper by Pickard and Payne [1] has called attention to the operational
differences between these two computational problems, and, at least for DOS calculations,
advocates and describes an ‘extrapolative’ approach in which the behaviour in the integration
cell surrounding a k-point is estimated from data at that point alone rather than derived
interpolatively using also data from neighbouring points.

The present paper is focused on calculations of the first type (as defined above), for which
interpolative methods have provided reasonably successful results. Many of the interpolative
computations thus far reported have been based on the use of ‘special points’ designed to
minimize calculational error; procedures of this kind apply best when the band occupancy is
complete, but have also provided satisfactory results for more complex occupancy patterns
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such as are encountered in metals. The special-points approach is illustrated by contributions
such as that of Chadi and Cohen [2] and the frequently cited work of Monkhorst and Pack [3].

An alternative to the use of special points most naturally arises when the BZ is described as
an assembly of simplices, with an interpolative optimum-integration procedure applied using a
set of points in each simplex. Early work in this direction used linear interpolations of the band
energies and other properties [4]. However, more accurate methods based on simplices have
since been studied, and, in an article with the same title as this communication, Wiesenekker
et al [5] reported an algebraic method for the integration of quadratically interpolated quantities
for systems with two-dimensional periodicity.

The work by Wiesenekker et al compares quadratic methods both with linear methods [6,7]
and with an earlier attempt at a quadratic method by Methfessel et al [8]. For the history
of this problem, we refer the reader to several significant earlier contributions [9–13]; for an
extension to three dimensions we cite another contribution from the Baerends group: [14]. The
method of Wiesenekker et al is quadratic in its treatment of both the band energy and property
quantities, and in that approximation includes analytical formulae for integrals restricted to a
single band energy (such as the DOS). However, these authors only succeeded in proposing
numerical (as opposed to analytical) methods for the final evaluation of quantities described
as two-dimensional integrals (such as band occupancies), and these numerical methods must
be implemented carefully to avoid instabilities associated with the existence of van Hove
singularities [15]. The rapid convergence of the quadratic method (with respect to the number
of k-points) makes it desirable to improve the computational efficiency by eliminating the final
numerical steps.

The present paper deals with the completely analytic evaluation of integrals of the type

Jn(E) =
∫

fn(k)θ(E − εn(k)) dk (1)

where fn(k) is the value of a quantity associated with energy band n at two-dimensional
reciprocal-space point k, θ is the Heaviside function (unity for positive values of its argument,
zero otherwise), εn(k) is the energy of band n at k, E is the Fermi energy, and the integration
is by a quadratic method based on simplices for the irreducible wedge of the BZ. Much of the
discussion also applies to integrals of the type

In(E) =
∫

fn(k)δ(E − εn(k)) dk (2)

where δ is the Dirac delta function, but we give no formulae for complete evaluation of In(E)

because these may be found in the work of Wiesenekker et al [5].
The essential contributions of the present communication are (1) a simpler and more

straightforward way of evaluating Jn(E) and In(E) for partially occupied bands, and (2) the
presentation of completely analytical formulae for all the quantities involved in the evaluation
of Jn(E). A computer program illustrating the method is available on the Web [16].

2. Quadratic integration scheme

Following Wiesenekker et al, the irreducible wedge of the BZ is divided into simplices (in this
two-dimensional case, triangles), and values of fn and εn (for all n) are assumed to be available
at the vertices and the midpoints of the sides of each triangle. There is no requirement that
the triangles have specific angles or relations among their dimensions, nor that the various
simplices of the irreducible wedge be similar. In fact, it is not even required that the same
division into simplices be used for different bands.
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For each simplex and band, the six values of f suffice to define a quadratic
approximation f̄ , applicable throughout the simplex; similarly, from the six ε-values, one may
define a quadratic approximation ε̄. We are no longer using symbols to designate particular
bands; the formulae to be obtained apply to any band and simplex. In general terms, the
procedure to be followed for Jn(E) will be (1) to construct ε̄ from the six input data points
of the simplex; (2) to determine the path(s) in the simplex on which ε̄ = E, thereby also
identifying the occupied portion of the simplex (that for which ε̄ < E); (3) to integrate over
the occupied part of the simplex the six monomials used in f̄ ; and (4) to convert the results of
step (3) into weights with which the individual f -points are to be combined. Alternatively to
step (3), one could perform monomial integrations along the simplex paths, thereby obtaining
the building blocks needed for the integrals In(E); we need not do so explicitly, as those results
are contained in previous work [5].

It is easiest to carry out the procedure indicated above for a ‘standard’ simplex with
convenient geometry; for this purpose we take a right triangle, with sides of unit length
along the x- and y-directions of a Cartesian coordinate system. An arbitrary triangle can
be transformed to the standard simplex by a linear transformation with Jacobian equal to the
constant value 2A, where A is the area of the untransformed triangle. Since vertices and side
midpoints remain such under the transformation, one can work out integration formulae for
the standard simplex, and use them unchanged (except for a scale factor 2A) for simplices of
arbitrary dimensions [17].

In addition to the benefits arising from a quadratic (as opposed to a linear) method, the
scheme of Wiesenekker et al has two practical advantages, of which the first is that all the
evaluation points (except some on the boundary of the irreducible wedge) are common to
several simplices. A second advantage is that the integration can be refined by inscribing in
each triangle another triangle whose vertices are at the side midpoints of the original triangle.
This means that all points used at a given level of approximation can be reused at all subsequent
stages of refinement.

3. Detailed procedure

3.1. Quadratic representation of ε

The first main step of the integration procedure is to obtain a representation of ε in the
coordinates x, y of the standard simplex, as was done by Wiesenekker et al [5]. Writing

ε̄(x, y) = q1 + q2x + q3y + q4x
2 + q5xy + q6y

2 (3)

the coefficients q1–q6 are obtained by the matrix multiplication




q1

q2

q3

q4

q5

q6




=




1 0 0 0 0 0
−3 −1 0 4 0 0
−3 0 −1 0 0 4

2 2 0 −4 0 0
4 0 0 −4 4 −4
2 0 2 0 0 −4







ε(0, 0)

ε(1, 0)

ε(0, 1)

ε(1/2, 0)

ε(1/2, 1/2)

ε(0, 1/2)




. (4)

Here ε(0, 0), ε(1, 0), . . . refer to the ε-values at the points of the input simplex that correspond
to the points (0, 0), (1, 0), . . . of the standard simplex. For later reference, the 6 × 6 matrix in
equation (4) will be denoted as G.
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3.2. Paths bounding integration region

The second major step of the integration procedure is to identify the path(s) bounding the
portion of the standard simplex for which ε̄(x, y) < E.

We start the path identification by using the representation provided by equation (3) to
find the points, if any, where ε̄(x, y) = E intersects the standard simplex. We require: (1) the
solutions between y = 0 and 1, if any, of q1 + q3y + q6y

2 = E; these describe points (0, y);
(2) the solutions between x = 0 and 1, if any, of q1 +q2x+q3(1−x)+q4x

2 +q5x(1−x)+q6(1−
x)2 = E; these describe points (x, 1−x); and (3) the solutions between x = 0 and 1, if any, of
q1 + q2x + q4x

2 = E; these describe points (x, 0). These intersection points, and the vertices
(0, 0), (0, 1), and (1, 0) of the standard simplex, are then arranged in the order in which they
would be encountered in a clockwise circuit of that simplex. This ordered set of points (which
we call the ‘simplex list’) will be thought of as defining the straight-line segments connecting
its successive points, including a segment from the last point to the first.

We next find the rotation and translation needed to bring the curve described by ε̄(x, y) =
E (the ‘curve’; it is a conic section or a degenerate form thereof) to a standard form permitting
the easy identification of its type and the locations, if any, of its critical points (bifurcation
points for y viewed as a function of x; double-valued square roots change sign when passing
on the curve through such points). The standard form will place conic sections symmetrically
with respect to the origin and with foci on a coordinate axis; degenerate conics are transformed
into lines parallel to the y-axis.

We apply the above-identified transformation to the intersection points, and then arrange
the intersection points and any critical points in the order in which they would be encountered
in a clockwise circuit of the curve (as seen from the origin of the transformed coordinates). An
algorithm for ordering the points is straightforward when the curve is in a standard form. The
ordered set of points (which we call the ‘curve list’) will be thought of as defining the curve
sections connecting its successive points, including that from the last point to the first.

Since it will be our plan to surround each included portion of the standard simplex by a
boundary to be traversed in the clockwise direction, we determine, and use henceforth, the
direction of travel in the curve list that places the included region on the right-hand side. Thus,
if in the transformed coordinates ε̄(0, 0) < E, the curve list will be traversed in the forward
direction, otherwise, in reverse.

Clockwise paths enclosing the occupied portion of the standard simplex (in the transformed
coordinates) may now be constructed as follows: starting from the first segment of the simplex
list in which ε̄ < E, proceed forward in the simplex list until an intersection point is reached;
then proceed on the curve list from that intersection point until another intersection is reached;
then from there forward on the simplex list to the next intersection, alternating the use of the
two lists in this way until returning to the start point. If all the simplex list segments with
ε̄ < E have not yet been used, find another such segment of the simplex list and repeat the
process. If there were no intersections, traverse the entire simplex list or none of it (depending
upon whether or not ε̄ < E). If the curve ε̄(x, y) = E is entirely within the simplex, then also
traverse the entire curve list (which in that case must describe an ellipse). In all cases, retain
the information needed to fully identify the paths (including vertex and bifurcation points).

3.3. Integration of monomials

The next step in our analysis is to integrate, in the transformed coordinate system, the
monomials 1, x, y, x2, xy, and y2 over the portions of the standard simplex bounded by
the paths that we found in the preceding section. A relatively simple way of doing this is
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based on relations between integrals over an area and line integrals for the boundary path. For
example, the integral of 1 (the area) is given by

J1 =
∫

A

dA =
∫

C

y dx (5)

where the path C runs clockwise around the boundary of the area A, and the subscript to J

refers to the monomial (in this case, 1). To evaluate J1, we write

J1 =
∫ x2

x1

y dx +
∫ x3

x2

y dx + · · · +
∫ xn

xn−1

y dx +
∫ x1

xn

y dx

= η12[j1(x2) − j1(x1)] + η23[j1(x3) − j1(x2)]

+ · · · + ηn−1,n[j1(xn) − j1(xn−1)] + ηn1[j1(x1) − j1(xn)] (6)

where x1, x2, . . . , xn, x1 are the successive x-values along path C, and j1(x) is the indefinite
integral

∫ x
y dx for the y appropriate to the path section being integrated, and with y, if double

valued, on its upper branch. Each coefficient ηij is +1 unless the path section from xi to xj is
on the lower branch of a double-valued function, in which case ηij = −1.

Equations analogous to equation (5) can be written for the remaining monomials:

Jx =
∫

A

x dA =
∫

C

xy dx (7)

Jy =
∫

A

y dA =
∫

C

1
2y2 dx (8)

Jxx =
∫

A

x2 dA =
∫

C

x2y dx (9)

Jxy =
∫

A

xy dA =
∫

C

1
2xy2 dx (10)

Jyy =
∫

A

y2 dA =
∫

C

1
3y3 dx. (11)

The evaluation of Jx , Jxx , and Jyy will be by equations similar to equation (6); the formulae
for Jy and Jxy will differ from an analogue of equation (6) by omission of the ηij -factors—in
these last two line integrals y occurs to an even power. We will therefore also need the indefinite
integrals jx(x) = ∫ x

xy dx, jy(x) = 1
2

∫ x
y2 dx, jxx = ∫ x

x2y dx, jxy = 1
2

∫ x
xy2 dx, and

jyy(x) = 1
3

∫ x
y3 dx.

We now need to evaluate the various indefinite integrals for the different curve types
involved: parabola, ellipse, hyperbola, and straight line. All the integrals reduce to elementary
functions.

Parabola. Assumed functional form: y = ax2 + b;

j1(x) = 1
3ax3 + bx (12)

jx(x) = 1
4ax4 + 1

2bx2 (13)

jy(x) = 1
2ajxx(x) + 1

2bj1(x) (14)

jxx(x) = 1
5ax5 + 1

3bx3 (15)

jxy(x) = 1
12a2x6 + 1

4abx4 + 1
4b2x2 (16)

jyy(x) = abjxx(x) + 1
21a3x7 + 1

3b3x. (17)
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Ellipse or hyperbola. Assumed functional form: y = (ax2 + b)1/2;

j1(x) = x

2
(ax2 + b)1/2 +

bW(x)

2|a|1/2
(18)

jx(x) = (ax2 + b)3/2

3a
(19)

jy(x) = 1
6ax3 + 1

2bx (20)

jxx(x) = x(ax2 + b)3/2

4a
− b

4a
j1(x) (21)

jxy(x) = 1
8ax4 + 1

4bx2 (22)

jyy(x) = 1
3bj1(x) + 1

3ajxx(x). (23)

For the ellipse,

W(x) = sin−1

( |a|1/2x

b1/2

)
. (24)

For the hyperbola,

W(x) = log(|a|1/2x + (|a|x2 + b)1/2). (25)

Straight line. Assumed functional form: y = ax + b;

j1(x) = 1
2ax2 + bx (26)

jx(x) = 1
3ax3 + 1

2bx2 (27)

jy(x) = 1
2ajx(x) + 1

2bj1(x) (28)

jxx(x) = 1
4ax4 + 1

3bx3 (29)

jxy(x) = 1
2ajxx(x) + 1

2bjx(x) (30)

jyy(x) = 1
3a2jxx(x) + 2

3abjx(x) + 1
3b2j1(x). (31)

Note: These integrals vanish for lines parallel to y-axis (i.e. given by x = c).
We ultimately need the monomial integrals in the original (untransformed) coordinate

system of the standard simplex, so the final step of this section is to apply to them the inverse
of the transformation used to bring the curve to standard form. For details see Wiesenekker
et al [5].

3.4. Integration weights for f

If we assume that f has a quadratic expansion in the coordinates of the standard simplex, of
the form

f̄ (x, y) = p1 + p2x + p3y + p4x
2 + p5xy + p6y

2 (32)

then the integral of f̄ will be a corresponding linear combination of the integrals of its
monomials. Letting J1, Jx, . . . stand for these integrals over the occupied portion(s) of the
standard simplex in the original (untransformed) coordinates, we have∫

A

f̄ (x, y) dA = p1J1 + p2Jx + p3Jy + p4Jxx + p5Jxy + p6Jyy. (33)
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Writing this equation in matrix form, and introducing a formula analogous to equation (4) to
relate p1–p6 to f (0, 0), f (1, 0), . . . , we obtain

∫
A

f̄ dA = ( J1 Jx Jy Jxx Jxy Jyy ) G




f (0, 0)

f (1, 0)

f (0, 1)

f (1/2, 0)

f (1/2, 1/2)

f (0, 1/2)




(34)

where G is the matrix in equation (4). This equation shows that
∫
A

f̄ dA can be written as a
weighted sum of the values f (0, 0), f (1, 0), . . . :∫

A

f̄ dA = w1f (0, 0) + w2f (1, 0) + w3f (0, 1)

+ w4f (1/2, 0) + w5f (1/2, 1/2) + w6f (0, 1/2) (35)

with

( w1 w2 w3 w4 w5 w6 ) = ( J1 Jx Jy Jxx Jxy Jyy ) G. (36)

As observed by Wiesenekker et al, the integration weights depend upon ε̄ but not upon f̄ .

4. Discussion

When the method of the foregoing section is implemented computationally, a number of
programming issues arise, including the following:

(1) When a simplex–curve intersection occurs at a vertex of the simplex, the curve may or may
not, depending upon its direction, enter the simplex. The simplest way to avoid problems
from such intersections is to move them a negligible amount away from the vertices by
making small changes in the coefficients of the expansion for ε̄ before undertaking the
analysis of section 3.

(2) As each successive section of a boundary path is identified, we need to set a marker
showing whether it is a curve or a straight-line section, and if the curve of a double-valued
function whether the section is on the upper or lower branch. Each individual straight-line
section will have its own coefficients a and b, but all curve sections will have common
parameters which can be determined when transforming the curve to standard form.

(3) Often, as for example during the successive iterations of a self-consistent-field process, the
only property to be evaluated will be the band occupancy, which is simply J1. Because J1 is
invariant under the rotation–translation transformation, it will in this case be unnecessary
either to calculate Jx, . . . , Jyy or to explicitly carry out the inverse transformation. It will
increase efficiency to recognize this situation with an input flag.

An issue that, in contrast to the case for the work of Wiesenekker et al, does not arise here
is the effect of van Hove singularities. Those authors used numerical quadrature to evaluate
J (E) as the integral of an appropriate I (ε) over the ε-range (εmin, E). Such a procedure will
be sensitive to singularities in the density of states, i.e. the van Hove singularities (which must
always exist [15]). We avoid this problem here because we are working with closed analytical
expressions. It goes without saying that the replacement of a numerical quadrature by relatively
compact closed formulae will also translate into a substantial gain in computing efficiency.
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5. Illustrative calculations

Both to validate our methods and to illustrate their use, we present a few sample calculations,
computed using a FORTRAN 90 program that we prepared for that purpose. We do not provide
an extensive evaluation because the present method is simply an improved way of carrying out
the process already studied in detail by Wiesenekker et al [5]. Our test program is available
on the World Wide Web [16], and it can easily be modified to carry out any further tests that
may be desired.

All calculations are either for a square BZ or for a triangular irreducible wedge thereof
(assuming fourfold symmetry). For the irreducible wedge, the coarsest grid was the entire
wedge: a triangle with vertices at (kx, ky) = (0, 0), (0, 1), and (1, 0). For the entire zone, the
coarsest grid consisted of two triangles: one with vertices (−1, −1), (1, −1), and (1, 1); the
other with vertices (1, 1), (−1, 1), and (−1, −1). Finer grids were generated by connecting
the midpoints of all triangle sides of the next coarser grid. We designate the number of times
this subdivision has been carried out by n; a triangle that has been subdivided in this way n

times will consist of 22n smaller triangles, and an integration by our method for this subdivided
triangle will utilize (2n+1 + 1)(2n + 1) distinct k-points.

Values of the band energy ε(k) at the data points were generated from one of the following
three formulae (referred to in the tables by the subscripts shown here):

ε1(k) = k2
x + k2

y (37)

ε2(k) = k2
x + k2

y

1 + 0.2 cos 4φ
(38)

ε3(k) = 0.4(kx − 0.65)4 + 0.2(ky − 0.33)4 (39)

where φ = tan−1(ky/kx) is the polar angle in k-space. The energy profile ε1 will (for any
Fermi energy) produce an integration region that our method will represent exactly, consisting
of circular arcs and straight-line segments. Profile ε2, while consistent with fourfold symmetry,
will (for Fermi energies corresponding to a partially occupied band) yield a boundary curve
that we will only be able to represent approximately. Profile ε3 will, for certain values of the
Fermi energy, produce a closed integration boundary requiring approximate representation,
located asymmetrically entirely within the BZ.

Values of the functions f (k) to be integrated were generated at the data points from one
of the following formulae:

f1(k) = 1 (40)

f2(k) = k2
x + k2

y (41)

f3(k) = (k2
x + k2

y)
1/2 (42)

f4(k) = cos(2πkx) + cos(2πky). (43)

Functions f1 (the area) and f2 (a kinetic energy integral) are exactly representable in our
method and should give exact results when integrated over an exactly representable region.
Function f3, which is simply the magnitude of k, is only representable approximately by a
quadratic form, and function f4 will only have a reasonable quadratic approximation when the
grid is not too coarse.

Some representative calculations for the irreducible wedge are presented in table 1. At
the Fermi energy chosen, the integration region for ε1 will be that within a circular arc, while
for ε2 it will be a complicated shape in part delimited by the zone boundary. When both ε

and f are represented exactly, we obtain a result that is independent of the grid subdivision
and also agrees with analytic evaluations of the same integrals. When either the integration
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Table 1. Irreducible wedge integrations, at grid subdivision n. All calculations are for Fermi
energy E = 1.0, and for the indicated energy profiles εk and functions fk . For a more detailed
specification, see the text.

n ε1, f1 ε1, f2 ε1, f3 ε2, f1 ε2, f2 ε2, f3

0 0.392 6991 0.196 3495 0.266 5848 0.374 4011 0.179 7432 0.249 0470
1 0.392 6991 0.196 3495 0.262 4176 0.374 1209 0.179 8731 0.244 9184
2 0.392 6991 0.196 3495 0.261 8752 0.373 9700 0.179 7480 0.244 2391
3 0.392 6991 0.196 3495 0.261 8088 0.373 9695 0.179 7493 0.244 1728
4 0.392 6991 0.196 3495 0.261 8006 0.373 9701 0.179 7499 0.244 1652
5 0.392 6991 0.196 3495 0.261 7996 0.373 9701 0.179 7488 0.244 1642

Table 2. BZ integrations, at grid subdivision n. All calculations are for Fermi energy E = 0.1 and
energy profile ε3, and for the indicated functions fk . For a more detailed specification, see the text.

n f1 f2 f3 f4

0 1.488 305 0.888 579 0.902 719 2.976 610
1 0.650 129 0.411 442 0.509 705 −0.518 516
2 0.681 187 0.415 919 0.512 468 −0.149 305
3 0.644 110 0.407 013 0.493 677 −0.186 966
4 0.645 208 0.406 250 0.493 677 −0.186 920
5 0.645 301 0.406 145 0.493 625 −0.187 105

boundary or the function are only approximately represented, we note a rapid convergence
with grid subdivision.

Table 2 presents a few results for partial occupancy of the entire BZ. The grids for these
calculations span eight times the area of those for the irreducible wedge, but for given n

have only twice as many points. The main purpose of this table is to illustrate results for an
integration region that is a closed curve entirely within the BZ and centred asymmetrically.
The very poor result for f4 on the coarsest grid reflects the fact that the values of this oscillatory
function on the zone boundary give no information about its behaviour at interior points.
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